Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.385
1.
Pest Manag Sci ; 80(2): 586-591, 2024 Feb.
Article En | MEDLINE | ID: mdl-37740933

BACKGROUND: An important component of the biological activity of pyrethroids, when used in disease vector control, is excito-repellency. In this study, behavioral differences between insecticide susceptible (Orlando) and pyrethroid resistant (Puerto Rican) strains of Aedes aegypti were explored in a round glass arena using fabrics treated with permethrin, etofenprox, deltamethrin, or DDT. Repellency was evaluated across several variables, including the time to first flight (TFF), number of landings (NOL), total flight time (TFT), and maximum surface contact (MSC), all by video analysis. RESULTS: Results from the Orlando strain indicated they were less likely than the Puerto Rican strain to tolerate tarsal contact with the treated fabrics. All four response variables indicated that the mosquito flight and landing behavior was most affected by pyrethroid resistance [knockdown resistance (kdr)] status. In other experiments, mosquitoes were surgically altered, with antennae ablated bilaterally, and these mosquitoes were more likely to stay on the treated surfaces for longer periods of time, irrespective of any chemical exposure. There were also differences in the responses to antennal ablation between the two strains of mosquitoes, indicating that resistance factors, probably kdr, influence the reactivity of mosquitoes to pyrethroid and DDT treatments, and that it was not completely negated by antennal ablation. CONCLUSIONS: These findings confirm the role of antennal olfactory components in the expression of excito-repellent behaviors, and also support the hypothesis that excito-repellency from pyrethroid/DDT exposure is probably due to a combination of sublethal neurotoxic excitation and interactions with the olfactory system. © 2023 Society of Chemical Industry.


Aedes , Insect Repellents , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Permethrin/pharmacology , DDT/pharmacology , Insecticide Resistance , Mosquito Vectors , Pyrethrins/pharmacology , Insect Repellents/pharmacology
2.
Malar J ; 22(1): 382, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38110952

BACKGROUND: Pyrethroids are the main insecticides used in vector control for malaria. However, their extensive use in the impregnation of long-lasting insecticidal nets (LLINs) and indoor residual spraying has led to the development of resistance, threatening its success as a tool for malaria control. Baseline data prior to large scale distribution of LLINs are important for the implementation of efficient strategies. However, no data on the susceptibility of malaria vectors is available in the Moyen-Ogooué Province in Gabon. The aim of this study was to assess the susceptibility to pyrethroids and organochlorides of malaria vectors from a semi-urban and rural areas of the province and to determine the frequency of insecticide resistance genes. METHODS: Larvae were collected from breeding sites in Lambaréné and Zilé and reared to adults. Three to five-day old female Anopheles gambiae sensu lato mosquitoes were used in cone tube assays following the WHO susceptibility tests protocol for adult mosquitoes. A subsample was molecularly identified using the SINE200 protocol and the frequency of Vgsc-1014 F and - 1014 S mutations were determined. RESULTS: Anopheles gambiae sensu stricto (s.s.) was the sole species present in both Lambaréné and Zilé. Mosquito populations from the two areas were resistant to pyrethroids and organochlorides. Resistance was more pronounced for permethrin and DDT with mortality lower than 7% for both insecticides in the two study areas. Mosquitoes were statistically more resistant (P < 0.0001) to deltamethrin in Lambaréné (51%) compared to Zilé (76%). All the mosquitoes tested were heterozygous or homozygous for the knockdown resistance (Kdr) mutations Vgsc-L1014F and Vgsc-L1014S with a higher proportion of Vgsc-L1014F homozygous in Lambaréné (76.7%) compared to Zilé (57.1%). CONCLUSION: This study provides evidence of widespread resistance to pyrethroids in An. gambiae s.s., the main malaria vector in the Moyen-Ogooué Province. Further investigation of the mechanisms underlining the resistance of An. gambiae s.s. to pyrethroids is needed to implement appropriate insecticide resistance management strategies.


Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Female , Pyrethrins/pharmacology , Insecticides/pharmacology , Anopheles/genetics , DDT/pharmacology , Gabon , Mosquito Vectors/genetics , Insecticide Resistance/genetics , Mosquito Control/methods
3.
J Vector Borne Dis ; 60(3): 300-306, 2023.
Article En | MEDLINE | ID: mdl-37843241

BACKGROUND & OBJECTIVES: Aedes (Stegomyia) aegypti is a primary vector responsible for the transmission of various arboviral diseases in India. Without an effective drug or vaccine against these diseases, chemical insecticide-based vector control supplemented with source reduction remains the best option for their effective management. The development of insecticide resistance due to the continuous use of insecticides might affect the control operations. METHODS: Adults and larvae of Aedes aegypti were collected from different localities in Delhi. Larvae were exposed to discriminating (0.02mg/l) and application (1mg/l) doses of temephos. WHO tube assay was conducted for F1 adults using impregnated insecticide papers of dichlorodiphenyltrichloroethane (DDT), malathion, deltamethrin, permethrin, cyfluthrin, and lambda-cyhalothrin. RESULTS: Larvae of Ae. aegypti were found resistant (76.0%) to the discriminating dose of temephos, whereas suscep-tible (100.0%) to the application dose of the temephos. Adult Aedes (Fl) mosquitoes were resistant to DDT (23.7%), malathion (90.5%), deltamethrin (76.0%), permethrin (96.2 %) cyfluthrin (85.5%), and lambda-cyhalothrin (94.0%). INTERPRETATION & CONCLUSION: Indoor residual spray is not used in Delhi for vector control. Resistance in Aedes might be due to pesticide usage for agricultural activities in peripheral regions of Delhi. There is a need to investigate more on the insecticide resistance mechanisms for indirect resistance development. Understanding the insecticide susceptibility status of urban vectors is critical for planning effective control strategies.


Aedes , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Permethrin/pharmacology , Malathion/pharmacology , DDT/pharmacology , Temefos/pharmacology , Public Health , Mosquito Vectors , Pyrethrins/pharmacology , Insecticide Resistance , Larva , India
4.
Pestic Biochem Physiol ; 194: 105490, 2023 Aug.
Article En | MEDLINE | ID: mdl-37532317

Aedes aegypti is responsible for transmitting a variety of arboviral infectious diseases such as dengue and chikungunya. Insecticides, particularly pyrethroids, are used widely for mosquito control. However, intensive used of pyrethroids has led to the selection of kdr mutations on sodium channels. L982W, locating in the PyR1 (Pyrethroid receptor site 1), was first reported in Ae. aegypti populations collected from Vietnam. Recently, the high frequency of L982W was detected in pyrethroid-resistant populations of Vietnam and Cambodia, and also concomitant mutations L982W + F1534C was detected in both countries. However, the role of L982W in pyrethroid resistance remains unclear. In this study, we examined the effects of L982W on gating properties and pyrethroid sensitivity in Xenopus oocytes. We found that mutations L982W and L982W + F1534C shifted the voltage dependence of activation in the depolarizing direction, however, neither mutations altered the voltage dependence of inactivation. L982W significantly reduced channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, and Type II pyrethroids, deltamethrin and cypermethrin. No enhancement was observed when synergized with F1534C. In addition, L982W and L982W + F1534C mutations reduced the channel sensitivity to DDT. Our results illustrate the molecular basis of resistance mediates by L982W mutation, which will be helpful to understand the interacions of pyrethroids or DDT with sodium channels and develop molecular markers for monitoring pest resistance to pyrethroids and DDT.


Aedes , Insecticides , Pyrethrins , Animals , DDT/pharmacology , Leucine , Pyrethrins/pharmacology , Insecticides/pharmacology , Sodium Channels/genetics , Mutation , Insecticide Resistance/genetics , Aedes/genetics , Mosquito Vectors/genetics
5.
ACS Infect Dis ; 9(7): 1396-1407, 2023 07 14.
Article En | MEDLINE | ID: mdl-37311068

The development of safe and potent insecticides remains an integral part of a multifaceted strategy to effectively control human-disease-transmitting insect vectors. Incorporating fluorine can dramatically alter the physiochemical properties and bioavailability of insecticides. For example, 1,1,1-trichloro-2,2-bis(4-fluorophenyl)ethane (DFDT)─a difluoro congener of trichloro-2,2-bis(4-chlorophenyl)ethane (DDT)─was demonstrated previously to be 10-fold less toxic to mosquitoes than DDT in terms of LD50 values, but it exhibited a 4-fold faster knockdown. Described herein is the discovery of fluorine-containing 1-aryl-2,2,2-trichloro-ethan-1-ols (FTEs, for fluorophenyl-trichloromethyl-ethanols). FTEs, particularly per-fluorophenyl-trichloromethyl-ethanol (PFTE), exhibited rapid knockdown not only against Drosophila melanogaster but also against susceptible and resistant Aedes aegypti mosquitoes, major vectors of Dengue, Zika, yellow fever, and Chikungunya viruses. The R enantiomer of any chiral FTE, synthesized enantioselectively, exhibited faster knockdown than its corresponding S enantiomer. PFTE does not prolong the opening of mosquito sodium channels that are characteristic of the action of DDT and pyrethroid insecticides. In addition, pyrethroid/DDT-resistant Ae. aegypti strains having enhanced P450-mediated detoxification and/or carrying sodium channel mutations that confer knockdown resistance were not cross-resistant to PFTE. These results indicate a mechanism of PFTE insecticidal action distinct from that of pyrethroids or DDT. Furthermore, PFTE elicited spatial repellency at concentrations as low as 10 ppm in a hand-in-cage assay. PFTE and MFTE were found to possess low mammalian toxicity. These results suggest the substantial potential of FTEs as a new class of compounds for controlling insect vectors, including pyrethroid/DDT-resistant mosquitoes. Further investigations of FTE insecticidal and repellency mechanisms could provide important insights into how incorporation of fluorine influences the rapid lethality and mosquito sensing.


Aedes , Fluorine Compounds , Insecticides , Pyrethrins , Zika Virus Infection , Zika Virus , Animals , Humans , Insecticides/pharmacology , Fluorine/pharmacology , DDT/pharmacology , Fluorine Compounds/pharmacology , Drosophila melanogaster , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Mammals
6.
PLoS One ; 18(5): e0285605, 2023.
Article En | MEDLINE | ID: mdl-37167211

The study evaluates the resistance and susceptibility of adult female Anopheles gambiae s. l., Aedes aegypti and Culex quinquefasciatus mosquitoes sourced within Osogbo metropolis, Osun State, Nigeria to four groups of insecticides [Permethrin, Deltamethrin, Pirimiphos-methyl and DDT (Dichlorodiphenyltrichloroethane)] and the distribution of their larval habitat within the metropolis. Mosquito larvae of the three genera were collected during the wet season and reared to adult stage in the laboratory. Emerged adult female mosquitoes were exposed to insecticide impregnated papers of the four insecticide groups for 60mins using WHO kits to determine the knock down rate (kdr). Thereafter, they were transferred into holding tubes and left for 24hrs to assess their resistance and susceptibility according to the WHO protocol. Four types of larval habitats were identified (tires, ground pools, gutters and plastic containers). Anopheles gambiae s. l. showed the highest resistance to Permethrin (49%) (p = 0.04, p<0.05) while the highest susceptibility was recorded with Pirimiphos-methyl (69%) with the lowest against Permethrin (16%) (P = 0.002; p<0.05). The highest resistance of A. aegypti was against OC-Control (45%) (p = 0.031; p<0.05). Permethrin had the highest susceptibility (60%) against A. aegypti while OC-control had the lowest (11%) (p = 0.005; p< 0.05). Culex quinquefasciatus had a lower resistance to OC-control (38%) as compared with Aedes aegypti (45%). However, it was least susceptible to Pirimiphos-methyl (52%) and DDT (17%) respectively (p = 0.013; p<0.05). The susceptibility of A. gambiae s. l. and C. quinquefasciatus to Pirimiphos-methyl and A. aegypti to Permethrin is an indication of the possibility of success if employed for vector control of A. gambiae s. l., C. quinquefasciatus and A. aegypti respectively. This could be through their inclusion as active ingredients in insecticide treated nets (ITNs) and indoor residual spray (IRS) with a view to abating malaria and other life-threatening mosquito-borne diseases constituting global public health scourge.


Aedes , Anopheles , Culex , Insecticides , Pyrethrins , Animals , Female , Insecticides/pharmacology , Permethrin/pharmacology , DDT/pharmacology , Nigeria , Insecticide Resistance , Mosquito Vectors , Nitriles/pharmacology , Mosquito Control/methods , Larva
7.
Toxicology ; 493: 153554, 2023 07.
Article En | MEDLINE | ID: mdl-37236336

DDT, a persistent organic pollutant, remains affecting human health worldwide. DDT and its most persistent metabolite (p,p'-DDE) negatively affect the immune response regulation and mechanisms involved in protecting against pathogens Such metabolite decreases the capability to limit intracellular growth of Mycobacterium microti and yeast. However, the effect on unstimulated (M0) and anti-inflammatory macrophages (M2) has been evaluated scanty. Herein, we evaluated the impact of p,p'-DDE at environmentally relevant concentrations (0.125, 1.25, 2.5, and 5 µg/mL) on bone marrow-derived macrophages stimulated with IFNγ+LPS to M1 or with IL-4 +IL-13 to M2. Thus we study whether the p,p'-DDE induces M0 to a specific phenotype or modulates activation of the macrophage phenotypes and explains, at least partly, the reported effects of p,p'-DDE on the M1 function. The p,p'-DDE did not affect the cell viability of M0 or the macrophage phenotypes. In M1, the p,p'-DDE decreased NO•- production and IL-1ß secretion, but increasing cellular ROS and mitochondrial O2•-, but did not alter iNOS, TNF-α, MHCII, and CD86 protein expression nor affect M2 markers arginase activity, TGF-ß1, and CD206; p,p'-DDE, did not affect marker expression in M0 or M2, supporting that its effects on M1 parameters are not dependent on M0 nor M2 modulation. The decreasing of NO•- production by the p,p'-DDE without altering iNOS levels, Arginase activity, or TNF-α, but increasing cellular ROS and mitochondrial O2 suggests that p,p'-DDE interferes with the iNOS function but not with its transcription. The p,p'-DDE decreasing of IL-1ß secretion, without any effect on TNF-α, suggest that an alteration of specific targets involved in IL-1ß secretion may be affected and related to ROS induction. The p,p'-DDE effect on iNOS function and the IL-1ß secretion process, as the NLRP3 activation, deserves further study.


Dichlorodiphenyl Dichloroethylene , Macrophages , Animals , Humans , Mice , Arginase/genetics , Arginase/metabolism , Arginase/pharmacology , DDT/metabolism , DDT/pharmacology , Dichlorodiphenyl Dichloroethylene/toxicity , Dichlorodiphenyl Dichloroethylene/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred BALB C , Phenotype , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/genetics
8.
Pestic Biochem Physiol ; 192: 105397, 2023 May.
Article En | MEDLINE | ID: mdl-37105620

The development of insecticide resistance in malaria vectors is a challenge for the global effort to control and eradicate malaria. Glutathione S-transferases (GSTs) are multifunctional enzymes involved in the detoxification of many classes of insecticides. For mosquitoes, it is known that overexpression of an epsilon GST, GSTe2, confers resistance towards DDT and pyrethroids. In addition to GSTe2, consistent overexpression of a delta class GST, GSTd3, has been observed in insecticide resistant populations of different malaria vector species. However, the functional role of GSTd3 towards DDT resistance has not yet been investigated. Here, we recombinantly expressed both GSTe2 and GSTd3 from Anopheles arabiensis and compared their metabolic activities against DDT. Both AaGSTd3 and AaGSTe2 exhibited CDNB-conjugating and glutathione peroxidase activity and DDT metabolism was observed for both GSTs. However, the DDT dehydrochlorinase activity exhibited by AaGSTe2 was much higher than for AaGSTd3, and AaGSTe2 was also able to eliminate DDE although the metabolite could not be identified. Molecular modeling revealed subtle differences in the binding pocket of both enzymes and a better fit of DDT within the H-site of AaGSTe2. The overexpression but much lower DDT metabolic activity of AaGSTd3, might suggest that AaGSTd3 sequesters DDT. These findings highlight the complexity of insecticide resistance in the major malaria vectors and the difficulties associated with control of the vectors using DDT, which is still used for indoor residual spraying.


Anopheles , Insecticides , Malaria , Pyrethrins , Animals , DDT/pharmacology , Anopheles/genetics , Mosquito Vectors , Insecticides/pharmacology , Insecticides/metabolism , Insecticide Resistance/genetics
9.
Bull Exp Biol Med ; 174(5): 689-692, 2023 Mar.
Article En | MEDLINE | ID: mdl-37043066

We studied features of age-related changes in the thymus of mature male Wistar rats developmentally exposed to the endocrine disruptor dichlorodiphenyltrichloroethane (DDT). The study was carried out at the stage of early thymus involution. Differences in the thymus morphology associated with imbalance of morphogenetic processes in the cortex and medulla were observed after puberty in rats developmentally exposed to DDT. Increased proliferation of thymocytes, higher content of lymphoblasts, and concomitant decrease in T-cell migration in comparison with the control were found. Our findings indicate lower functional maturity of the thymus and prolonged disorders in the program of postnatal thymus development induced by the endocrine disruptor DDT.


DDT , Endocrine Disruptors , Rats , Animals , Male , Rats, Wistar , DDT/pharmacology , Endocrine Disruptors/pharmacology , Sexual Maturation , Thymus Gland
10.
PLoS One ; 18(3): e0276246, 2023.
Article En | MEDLINE | ID: mdl-36952515

BACKGROUND: Broflanilide is a new insecticide being developed for malaria vector control. As new insecticide chemistries become available, strategies to preserve the susceptibility of local malaria vectors and extend their useful life need to be considered before large scale deployment. This requires the development of appropriate testing procedures and identification of suitable discriminating concentrations for monitoring susceptibility in wild vector populations to facilitate decision making by control programmes. METHODS: Dose-response WHO bottle bioassays were conducted using the insecticide-susceptible Anopheles gambiae s.s. Kisumu strain to determine a discriminating concentration of broflanilide. Bioassays were performed without the adjuvant Mero® and with two concentrations of Mero® (500 ppm and 800 ppm) to investigate its impact on the discriminating concentration of the insecticide. Probit analysis was used to determine the lethal doses at 50% (LC50) and 99% (LC99) at 24-, 48- and 72-hours post-exposure. Cross-resistance to broflanilide and pyrethroids, DDT, dieldrin and carbamates, was investigated using An. gambiae s.l. Covè and An. coluzzii Akron strains. The susceptibility of wild pyrethroid-resistant mosquitoes from communities in Southern Benin to broflanilide was assessed using the estimated discriminating concentrations. RESULTS: Broflanilide induced a dose-dependent and delayed mortality effect. Mortality rates in bottles treated without Mero® were <80% using the range of broflanilide doses tested (0-100 µg/bottle) leading to high and unreliable estimates of LC99 values. The discriminating concentrations defined as 2XLC99 at 72h post exposure were estimated to be 2.2 µg/bottle with 800 ppm of Mero® and 6.0 µg/bottle with 500 ppm of Mero®. Very low resistance ratios (0.6-1.2) were determined with the insecticide resistant An. gambiae s.l. Covè and An. coluzzii Akron strains suggesting the absence of cross-resistance via the mechanisms of resistance to pyrethroids, DDT, dieldrin and carbamates they possess. Bottle bioassays performed with broflanilide at both discriminating concentrations of 6 µg/bottle with 500 ppm of Mero® and 2.2 µg/bottle with 800 ppm of Mero®, showed susceptibility of wild highly pyrethroid-resistant An. gambiae s.l. from villages in Southern Benin. CONCLUSION: We determined discriminating concentrations for monitoring susceptibility to broflanilide in bottle bioassays, using susceptible An. gambiae vectors. Using the estimated discriminating concentrations, we showed that wild pyrethroid-resistant populations of An. gambiae s.l. from southern Benin were fully susceptible to the insecticide. Broflanilide also shows potential to be highly effective against An. gambiae s.l. vector populations that have developed resistance to other public health insecticides.


Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Humans , Insecticides/pharmacology , Dieldrin/pharmacology , DDT/pharmacology , Insecticide Resistance , Mosquito Vectors , Pyrethrins/pharmacology , Mosquito Control/methods , Carbamates/pharmacology , Biological Assay , World Health Organization
11.
J Vet Med Sci ; 85(2): 236-243, 2023 Feb 21.
Article En | MEDLINE | ID: mdl-36596564

Dichlorodiphenyltrichloroethane (DDT) is an organochlorine insecticide used worldwide. Several studies have reported the toxic effects of DDT and its metabolites on steroid hormone biosynthesis; however, its environmental effects are not well understood. This study examined wild rats collected in DDT-sprayed areas of South Africa and quantified plasma metabolites using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). Fold change analysis of the metabolome revealed the effect of DDT on bile acid biosynthesis. Gene expression of the related enzyme in rat liver samples was also quantified. Significant association was found between DDT and gene expression levels related to constitutive androstane receptor mediated enzymes, such as Cyp2b1 in rat livers. However, our results could not fully demonstrate that enzymes related to bile acid biosynthesis were strongly affected by DDT. The correlation between DDT concentration and gene expression involved in steroid hormone synthesis in testis was also evaluated; however, no significant correlation was found. The disturbance of metabolic enzymes occurred in rat liver in the target area. Our results suggest that DDT exposure affects gene expression in wild rats living in DDT-sprayed areas. Therefore, there is a need for DDT toxicity evaluation in mammals living in DDT-sprayed areas. We could not find an effective biomarker that could reflect the mechanism of DDT exposure; however, this approach can provide new insights for future research to evaluate DDT effects in sprayed areas.


DDT , Xenobiotics , Animals , Male , Rats , Bile Acids and Salts , DDT/pharmacology , Hormones , Mammals , Steroids , Animals, Wild
12.
J Vector Borne Dis ; 59(3): 236-240, 2022.
Article En | MEDLINE | ID: mdl-36511039

BACKGROUND & OBJECTIVES: The state of Himachal Pradesh is one of the hilly forested states of India. Warming of climate has been evidenced in the state due to the ongoing climate change which may cause the upsurge/introduction of mosquito-borne diseases. To curb disease transmission, an effective vector control strategy will be required. METHODS: Insecticide susceptibility status of available malaria vectors was determined using the standard WHO method in six districts Kangra, Una, Mandi, Bilaspur, Solan and Mandi of the state. An. culicifacies and An. fluviatilis were tested against DDT (4%), malathion (5%) and deltamethrin (0.05%) using WHO insecticide susceptibility kits. RESULTS: Overall, An. culicifacies was found resistant to DDT in all the six districts, susceptible to malathion in all districts except Bilaspur and Solan where it showed possible resistance. It was susceptible to deltamethrin in all the study districts. An. fluviatilis was resistant to DDT and susceptible to malathion and deltamethrin in Kangra and Una districts. INTERPRETATION & CONCLUSION: At present, indoor residual spraying (IRS) is not being undertaken in Himachal Pradesh. However, with the information generated through the present study, the state government can plan evidence-based IRS at least for focal spray in limited foci reporting malaria incidence.


Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Humans , Insecticides/pharmacology , Malaria/epidemiology , Malaria/prevention & control , Insecticide Resistance , Pyrethrins/pharmacology , Mosquito Control/methods , DDT/pharmacology , Insect Vectors , Mosquito Vectors , Malathion/pharmacology , India/epidemiology
13.
J Vector Borne Dis ; 59(3): 253-258, 2022.
Article En | MEDLINE | ID: mdl-36511042

BACKGROUND & OBJECTIVES: An. annularis van der Wulp (1884) is the secondary malaria vector of importance in India. In Jharkhand state it is present in almost all the districts abundantly and transmits malaria. The development of resistance to Dichlorodipheny ltrichloroethane (DDT) in An. annularis was reported from various parts of India. The main objective of this study was to generate information on insecticide susceptibility status of An. annularis to DDT, malathion, deltamethrin and permethrin in different districts of Jharkhand state. Methods; Adult An. annularis female mosquitoes were collected form villages of six tribal districts Simdega (Kurdeg and Simdega CHC), Khunti (Murhu and Khunti CHCs), Gumla (Bharno and Gumla CHCs), West Singhbhum (Chaibasa and Bada Jamda CHCs), Godda (Poraiyahat and Sunderpahari (CHCs) and Sahibganj (Borio and Rajmahal CHCs). Insecticide susceptibility status was determined by using WHO tube test method against prescribed discriminatory dosages of insecticides, DDT - 4.0%, malathion - 5.0%, deltamethrin - 0.05% and permethrin - 0.75%. RESULTS: An. annularis was reported resistant to DDT in six districts, possible resistant to malathion in districts Gumla, Khuntiand Sahibganj and susceptible to deltamehrin (98% to100% mortality) and permethrin (100% mortality). INTERPRETATION & CONCLUSION: An. annularis, the secondary vector species is associated with the transmission of malaria reported resistant to DDT and susceptible to pyrerthroids deltamethrin and permethrin. In view of large-scale distribution of long-lasting insecticidal nets (LLINs) in all the districts, the response to synthetic pyrethroid needs to be periodically monitored to assess the effectiveness.


Anopheles , Insecticides , Malaria , Pyrethrins , Animals , Female , Insecticides/pharmacology , Malaria/epidemiology , Malaria/prevention & control , Insecticide Resistance , DDT/pharmacology , Insect Vectors , Nitriles/pharmacology , Mosquito Vectors , Malathion/pharmacology , Permethrin/pharmacology
14.
Parasit Vectors ; 15(1): 426, 2022 Nov 14.
Article En | MEDLINE | ID: mdl-36376932

BACKGROUND: Insecticide resistance (IR) monitoring is essential for evidence-based control of mosquito-borne diseases. While widespread pyrethroid resistance in Anopheles and Aedes species has been described in many countries, data for Papua New Guinea (PNG) are limited. Available data indicate that the local Anopheles populations in PNG remain pyrethroid-susceptible, making regular IR monitoring even more important. In addition, Aedes aegypti pyrethroid resistance has been described in PNG. Here, Anopheles and Aedes IR monitoring data generated from across PNG between 2017 and 2022 are presented. METHODS: Mosquito larvae were collected in larval habitat surveys and through ovitraps. Mosquitoes were reared to adults and tested using standard WHO susceptibility bioassays. DNA from a subset of Aedes mosquitoes was sequenced to analyse the voltage-sensitive sodium channel (Vssc) region for any resistance-related mutations. RESULTS: Approximately 20,000 adult female mosquitoes from nine PNG provinces were tested. Anopheles punctulatus sensu lato mosquitoes were susceptible to pyrethroids but there were signs of reduced mortality in some areas. Some Anopheles populations were also resistant to DDT. Tests also showed that Aedes. aegypti in PNG are resistant to pyrethroids and DDT and that there was also likelihood of bendiocarb resistance. A range of Vssc resistance mutations were identified. Aedes albopictus were DDT resistant and were likely developing pyrethroid resistance, given a low frequency of Vssc mutations was observed. CONCLUSIONS: Aedes aegypti is highly pyrethroid resistant and also shows signs of resistance against carbamates in PNG. Anopheles punctulatus s.l. and Ae. albopictus populations exhibit low levels of resistance against pyrethroids and DDT in some areas. Pyrethroid-only bed nets are currently the only programmatic vector control tool used in PNG. It is important to continue to monitor IR in PNG and develop proactive insecticide resistance management strategies in primary disease vectors to retain pyrethroid susceptibility especially in the malaria vectors for as long as possible.


Aedes , Anopheles , Arboviruses , Insecticides , Malaria , Pyrethrins , Animals , Female , Insecticide Resistance/genetics , DDT/pharmacology , Papua New Guinea , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Anopheles/genetics , Malaria/prevention & control , Larva , Insecticides/pharmacology
15.
Sci Rep ; 12(1): 17872, 2022 10 25.
Article En | MEDLINE | ID: mdl-36284104

The glutathione S-transferases (GST) genes are a multigene family of enzymes involved in the metabolism of endogenous and xenobiotic compounds by catalysing the conjugation of the reduced form of glutathione to the substrate. The epsilon class of GST (GSTe), unique to arthropods, is known to be involved in the detoxification process of several classes of insecticides, and GSTe2 in particular is known to have DDT dehydrochlorinase activity. This communication reports a tandem duplication of a genomic region encoding GSTe2 and GSTe4 genes in a laboratory-colonized DDT-resistant Anopheles stephensi. We identified duplication breakpoints and the organization of gene duplication through Sanger sequencing performed on long-PCR products. Manual annotation of sequences revealed a tandemly-arrayed duplication of a 3.62 kb segment of GST epsilon gene clusters comprised of five genes: a partial GSTe1, GSTe2, GSTe2-pseudogene, GSTe4 and partial GSTe5, interconnected by a conserved 2.42 kb DNA insert segment major part of which is homologous to a genomic region located on a different chromosome. The tandemly duplicated array contained a total of two GSTe2 and three GSTe4 functional paralog genes. Read-depth coverage and split-read analysis of Illumina-based whole-genome sequence reads confirmed the presence of duplication in the corresponding region of the genome. The increased gene dose in mosquitoes as a result of the GSTe gene-duplication may be an adaptive process to increase levels of detoxifying enzymes to counter insecticide pressure.


Anopheles , Insecticides , Animals , Anopheles/metabolism , DDT/pharmacology , DDT/metabolism , Insecticides/metabolism , Insecticide Resistance/genetics , Xenobiotics , Glutathione Transferase/metabolism , Genomics , Glutathione
16.
Genes (Basel) ; 13(10)2022 Sep 25.
Article En | MEDLINE | ID: mdl-36292608

Despite the contribution of secondary vectors to malaria transmission, there is still not enough information on their susceptibility status to insecticides. The present study assesses the resistance profile of Anopheles pharoensis to DDT. WHO tube tests were used to screen mosquito populations collected from the far-north region of Cameroon for susceptibility to 4% DDT. High DDT resistance in An. pharoensis populations from Maga, Simatou and Yangah with mortality rates ranging from 62.79% to 80% was recorded. Direct sequencing (Sanger) of the VGSC gene was undertaken to search for kdr L1014F/S mutations. However, no kdr allele was detected in the resistant samples. We then looked for cuticle alterations and CHC identification and quantitation were undertaken using GC-MS and GC-FID. High production of cuticular hydrocarbon was recorded in the populations of Yangah and Simatou, with 2420.9 ± 265 and 2372.5 ± 225 ng CHCs/mg dry weight, respectively. The present findings are the first ever describing the development of cuticle resistance in An. pharoensis. The data suggest the need to expand surveillance activities on other vector species.


Anopheles , Insecticides , Pyrethrins , Animals , Anopheles/genetics , Insecticides/pharmacology , Insecticide Resistance/genetics , DDT/pharmacology , Cameroon , Mosquito Vectors/genetics
17.
Parasit Vectors ; 15(1): 220, 2022 Jun 21.
Article En | MEDLINE | ID: mdl-35729623

BACKGROUND: Malaria vector control using insecticide-based approaches has proven to be an effective strategy. However, widespread insecticide resistance among malaria vector populations across sub-Saharan Africa threatens to derail control efforts. This study was conducted in Chikwawa district, an area in rural southern Malawi characterised by persistent malaria transmission and reports of insecticide resistance in the local mosquito population. The aim of the was to characterise the intensity of insecticide resistance within a population of Anopheles funestus sensu lato (s.l.), a major vector of malaria in this district. METHODS: Live adult females belonging to the An. funestus group were collected from households by indoor aspiration. The CDC bottle assay was used for phenotypic quantification of resistance to deltamethrin, permethrin and alpha-cypermethrin at 1×, 2.5×, 5× and 10× the recommended diagnostic dose for each of these insecticides. WHO tube assays were used to determine susceptibility to bendiocarb, dichlorodiphenyltrichloroethane (DDT) and pirimiphos-methyl insecticides at diagnostic concentrations. RESULTS: Anopheles funestus s.l. exposed to 10× the recommended diagnostic dose was highly resistant to alpha-cypermethrin (mortality 95.4%); in contrast, mortality was 100% when exposed to both deltamethrin and permethrin at the same dose. Despite showing susceptibility to deltamethrin and permethrin at the 10× concentration, mortality at the 5× concentration was 96.7% and 97.1%, respectively, indicating moderate resistance to these two insecticides. WHO susceptibility assays indicated strong resistance against bendiocarb (mortality 33.8%, n = 93), whereas there was full susceptibility to DDT (mortality 98.9%, n = 103) and pirimiphos-methyl (mortality 100%, n = 103). CONCLUSIONS: Strategies for managing resistance to insecticides, particularly against pyrethroids, must be urgently implemented to maintain the effectiveness of insecticide-based vector control interventions in the area. Such strategies include the wide-scale introduction of third-generation synergist insecticide-treated bed nets (ITNs) and next-generation dual active ingredient ITNs. The use of effective non-pyrethroids, such as pirimiphos-methyl, clothianidin and potentially DDT, could provide a window of opportunity for indoor residual spraying across the district. This strategy would support the current Malawi Insecticide Resistance Management Plan which aims at rotating insecticides to minimise selection pressure and slow down the evolution of resistance to approved insecticides. These actions will help to prevent malaria vector control failure and improve progress towards malaria elimination.


Anopheles , Insecticides , Malaria , Pyrethrins , Animals , DDT/pharmacology , Female , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Malawi , Mosquito Control , Mosquito Vectors , Permethrin/pharmacology , Pyrethrins/pharmacology
18.
J Med Entomol ; 59(4): 1347-1354, 2022 07 13.
Article En | MEDLINE | ID: mdl-35595289

The aim of the present study was to explore resistance markers and possible biochemical resistance mechanisms in the Phlebotomine sand fly Phlebotomus papatasi in Esfahan Province, central Iran. Homogenous resistant strains of sand flies were obtained by exposing P. papatasi collected from Esfahan to a single diagnostic dose of DDT. The adults from the colony were tested with papers impregnated with four pyrethroid insecticides: Permethrin 0.75%, Deltamethrin 0.05%, Cyfluthrin 0.15%, and Lambdacyhalothrin 0.05% to determine levels of cross-resistance. To discover the presence of mutations, a 440 base pair fragment of the voltage gated sodium channel (VGSC) gene was amplified and sequenced in both directions for the susceptible and resistant colonies. We also assayed the amount of four enzymes that play a key role in insecticide detoxification in the resistant colonies. A resistance ratio (RR) of 2.52 folds was achieved during the selection of resistant strains. Sequence analysis revealed no knockdown resistance (kdr) mutations in the VGSC gene. Enzyme activity ratio of the resistant candidate and susceptible colonies were calculated for α-esterases (3.78), ß-esterases (3.72), mixed function oxidases (MFO) (3.21), and glutathione-S-transferases (GST) (1.59). No cross-resistance to the four pyrethroids insecticides was observed in the DDT resistant colony. The absence of kdr mutations in the VGSC gene suggests that alterations in esterase and MFO enzymes are responsible for the resistant of P. papatasi to DDT in central Iran. This information could have significant predictive utility in managing insecticide resistant in this Leishmania vector.


Insecticides , Leishmania , Phlebotomus , Psychodidae , Pyrethrins , Voltage-Gated Sodium Channels , Animals , DDT/pharmacology , Esterases , Insecticide Resistance/genetics , Insecticides/pharmacology , Iran , Phlebotomus/genetics , Pyrethrins/pharmacology , Voltage-Gated Sodium Channels/genetics
19.
PLoS Negl Trop Dis ; 16(5): e0010355, 2022 05.
Article En | MEDLINE | ID: mdl-35576233

Global efforts to control Aedes mosquito-transmitted pathogens still rely heavily on insecticides. However, available information on vector resistance is mainly restricted to mosquito populations located in residential and public areas, whereas commercial settings, such as hotels are overlooked. This may obscure the real magnitude of the insecticide resistance problem and lead to ineffective vector control and resistance management. We investigated the profile of insecticide susceptibility of Aedes aegypti mosquitoes occurring at selected hotel compounds on Zanzibar Island. At least 100 adults Ae. aegypti females from larvae collected at four hotel compounds were exposed to papers impregnated with discriminant concentrations of DDT (4%), permethrin (0.75%), 0.05 deltamethrin (0.05%), propoxur (0.1%) and bendiocarb (0.1%) to determine their susceptibility profile. Allele-specific qPCR and sequencing analysis were applied to determine the possible association between observed resistance and presence of single nucleotide polymorphisms (SNPs) in the voltage-gated sodium channel gene (VGSC) linked to DDT/pyrethroid cross-resistance. Additionally, we explored the possible involvement of Glutathione-S-Transferase gene (GSTe2) mutations for the observed resistance profile. In vivo resistance bioassay indicated that Ae. aegypti at studied sites were highly resistant to DDT, mortality rate ranged from 26.3% to 55.3% and, moderately resistant to deltamethrin with a mortality rate between 79% to and 100%. However, genotyping of kdr mutations affecting the voltage-gated sodium channel only showed a low frequency of the V1016G mutation (n = 5; 0.97%). Moreover, for GSTe2, seven non-synonymous SNPs were detected (L111S, C115F, P117S, E132A, I150V, E178A and A198E) across two distinct haplotypes, but none of these were significantly associated with the observed resistance to DDT. Our findings suggest that cross-resistance to DDT/deltamethrin at hotel compounds in Zanzibar is not primarily mediated by mutations in VGSC. Moreover, the role of identified GSTe2 mutations in the resistance against DDT remains inconclusive. We encourage further studies to investigate the role of other potential insecticide resistance markers.


Aedes , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Aedes/genetics , Animals , DDT/pharmacology , Female , Glutathione , Glutathione Transferase/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mutation , Pyrethrins/pharmacology , Tanzania , Voltage-Gated Sodium Channels/genetics
20.
PLoS Negl Trop Dis ; 16(5): e0010391, 2022 05.
Article En | MEDLINE | ID: mdl-35587498

Indoor Residual Spraying (IRS) is one of the interventions to control the vectors of Visceral Leishmaniasis (VL). Different insecticides are used in affected countries, also in the Regional Initiative for the Elimination of VL in South-East Asia. This systematic review assesses all available studies analysing the effectiveness of IRS on the key vectors of VL. The systematic review followed PRISMA guidelines, with a broad search strategy, applied to seven key databases. Inclusion criteria were studies focusing on 1) Visceral leishmaniasis 2) Indoor Residual Spraying (IRS) or synonyms, and 3) all primary research methods. 21 studies were included, five cluster randomised controlled trials (cRCTs), one randomised controlled trial (RCT), 11 intervention studies, also included were three modelling studies and one survey. 19 out of 21 included studies were published between 2009 and 2020. 18 of the studies were conducted in the context of the Regional Initiative. Effects of IRS on vector populations are positive, confirmed in terms of effectiveness and by the availability of studies. Deltamethrin and alpha-Cypermethrin reduce total sandfly counts, and/or Phlebotomus argentipes counts by up to 95% with an effect of a minimum of one month. Prolonged effects are not regularly seen. DDT has been used in India only: whereas in the 1990s a good effect could be measured, this effect waned over time. Two intervention studies, embedded in larger programmes in 2019 and 2020, replaced DDT with alpha-Cypermethrin throughout the study. Combinations of different interventions are not systematically researched, however showing some promising results, for example for the combination of IRS and Temephos. Constant monitoring of insecticide resistancies and quality delivery of IRS are confirmed as key issues for programmes. No human transmission data are available to directly relate an effect of IRS-although modelling studies confirm the effect of IRS on human transmission. Concluding, IRS continues to be an effective intervention for Phlebotomus argentipes control. Delivery requires constant monitoring and quality assurance. Further studies need to assess IRS in different geographical areas affected by VL and combinations of interventions.


Insecticides , Leishmaniasis, Visceral , Phlebotomus , Psychodidae , Animals , DDT/pharmacology , Disease Progression , Humans , Insect Vectors , Insecticides/pharmacology , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/prevention & control
...